9 research outputs found

    Darwin -— an experimental astronomy mission to search for extrasolar planets

    Get PDF
    As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument

    Interferometric Space Missions for the Search for Terrestrial Exoplanets: Requirements on the Rejection Ratio

    Get PDF
    The requirements on space missions designed to study Terrestrial exoplanets are discussed. We then investigate whether the design of such a mission, specifically the Darwin nulling interferometer, can be carried out in a simplified scenario. The key element here is accepting somewhat higher levels of stellar leakage. We establish detailed requirements resulting from the scientific rationale for the mission, and calculate detailed parameters for the stellar suppression required to achieve those requirements. We do this utilizing the Darwin input catalogue. The dominating noise source for most targets in this sample is essentially constant for all targets, while the leakage diminishes with the square of the distance. This means that the stellar leakage has an effect on the integration time only for the nearby stars, while for the more distant targets its influence decreases significantly. We assess the impact of different array configurations and nulling profiles and identify the stars for which the detection efficiency can be maximized.Comment: 21 pages, 8 figures; TBP in Astrophysics and Space Science 200

    New technologies for exoplanet detection with mid-IR interferometers

    No full text
    This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars

    Earth Atmosphere Observatory Formation at L2

    No full text
    corecore